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1 Wiener’s Theorem, Continued

1.1 Uniform continuity of Brownian motion on the dyadic rationals

Let’s finish our proof of the existence of Brownian motion. A good source for this is
Freedman’s book on Brownian Diffusion.

Theorem 1.1 (Wiener). On (Ω,F , P ) = ([0, 1],B,Leb), there exists a stochastic process
(B(t, ω), t ≥ 0, ω ∈ Ω) such that

1. For 0 ≤ t1 < t2 < · · · , < tn, Bt1 , Bt2−Bt1 , . . . , Btn−Btn−1 are independent with mean

0 and variance t1, t2,−t1, . . . , tn− tn−1 (this is consistent because N(0, s) ∗N(0, t)
d
=

N(0, s+ t)).

2. P ({ω ∈ Ω : t→ B(t, ω) is a continuous function}) = 1.

Proof. (cont.) On (Ω,F , P ) = ([0, 1],B,Leb), we will construct a random path (B(t, ω), ω ∈
[0, 1], t ≥ 0) such that

1. (Bt, t ≥ 0) has the finite dimensional distributions of Brownian motion.

2. For all ω ∈ Ω, t 7→ B(t, ω) is a continuous function of t.

So far, we have defined Bt(ω) for t in the dyadic rationals D, and we need only define it
for t ∈ [0, 1].

Now we want to show that the function t 7→ Bt from D → R is uniformly continuous
with probability 1. We use a technique that is very important in stochastic processes. Let
tn be the greatest multiply of 2−n that is ≤ t; explicitly, t = bt2nc/2n. We will show that
there exists a sequence of reals bn ↓ 0 such that

P ((∃t ∈ D s.t. |Bt −Btn | ≥ bn) i.o.) = 0.

This means that for almost every ω ∈ Ω, there exists an N(ω) such that for all n ≥ N(ω),
|Bt −Btn | ≤ bn.
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The definition of uniform continuity is ∀ε > 0, ∃δ > 0 such that |S − t| < δ =⇒
|Bs −Bt| < ε for all s, t. Take δ ≤ 2−n so that if |s− t| ≤ δ, then every s, t with |s− t ≤ δ|
is such that s and t are within the same or adjacent interval of length 2−n. If they are the
in the same interval, then they are ≤ bn apart; if s, t are in adjacent intervals, then they
are ≤ 2bn apart by the triangle inequality.

By the first Borel-Cantelli lemma, it is sufficient to find bn ↓ 0 such that∑
n

P (∃t ∈ D s.t. |Bt −Btn | ≥ bn︸ ︷︷ ︸
En

) <∞.

Using a union bound,

P (En) ≤ 2nP (∃t ∈ [0, 2−n] s.t. |Bt| > bn)

≤ 2n+1P (∃t ∈ [0, 2−n] s.t. Bt > bn)

Here, we use a preliminary form of the Brownian motion scaling property that (Bt, t ≥
0)

d−→ =((1/
√
c)B(ct), t ≥ 0) for all c > 0.

= 2n+1P (∃t ∈ [0, 1] s.t.Bt > 2n/2bn)

Note that this is the limit of an union of events, and use the continuity of probability
measures.

= 2n+1 lim
k→∞

P (∃t = j.2k ∈ [0, 1] s.t. Bt > 2n/2bn)

Now we use Levy’s maximal inequality applied to centered Gaussians.

≤ 2P (B1 > 2n/2bn)

= 2n+2

∫ ∞
2n/2bn

1

2π
e−x

2/2 dx

We now use a useful bound for the tail of a standard normal distribution, P (Z > z) ≤
ϕ(z)/z, where ϕ is the density of Z.

=
2n+2ϕ(2n/2bn)

2n/2bn
.

So we need only find bn ↓ 0 such that

∞∑
n=1

2n+2ϕ(2n/2bn)

2n/2bn
<∞.

This is left as an exercise, but you can check that bn = 1/n works.
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We now have on a set of probability 1 that (Bt, t ∈ D) is uniformly continuous. From
analysis, we have the fact that if f : D → R is uniformly continuous on a set that is dense
in [0, 1], then f has a unique continuous extension to a function g : [0, 1]→ R. This is done
by setting g(t) := limd→t f(d); proof is left as an exercise. So we can define (Bt, t ∈ [0, 1])
by an extension of (Bt, t ∈ D). There is a bad set of probability 0, and there we get Bt = 0.

We must check that this B has the correct finite dimensional distributions. The a.s.
limit of Gaussians Xn ∼ N(µn, σ

2
n) (if the limit exists) is a Gaussian random variable

with mean limn→∞ µn and variance limn→∞ σ
2
n, so the property holds. Independence of

increments is left as an exercise.

1.2 Levy’s maximal inequality and the significance of Wiener’s theorem

We state the lemma used in the above proof here:

Lemma 1.1 (Levy). Let Sn = X1 + · · · + xn for X1, X2, . . . symmetrically distributed

(Xk
d−→ =−Xk). Then

P

(
max
1≤k≤n

Sk ≥ b
)
≤ 2P (Xn ≥ b).

Why do we study Brownian motion? You might think that it is more useful to study
more general continuous random processes, rather than a special case. However, along
with Poisson processes, which we will learn about later, we will be able to construct more
complicated continuous random processes.

Here are a few calculations we can do before class ends. Let s < t. Then

Law of Bt given Bs = N(Bs, t− s).

Law of Bs given Bt = N((s/t)Bs, s(t− s)).

3


	Wiener's Theorem, Continued
	Uniform continuity of Brownian motion on the dyadic rationals
	Levy's maximal inequality and the significance of Wiener's theorem


