Stat 206B Lecture 2 Notes

Daniel Raban

January 18, 2018

1 Wiener's Theorem, Continued

1.1 Uniform continuity of Brownian motion on the dyadic rationals

Let's finish our proof of the existence of Brownian motion. A good source for this is Freedman's book on Brownian Diffusion.

Theorem 1.1 (Wiener). On $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}, Leb)$, there exists a stochastic process $(B(t, \omega), t \geq 0, \omega \in \Omega)$ such that

- 1. For $0 \le t_1 < t_2 < \cdots, < t_n, B_{t_1}, B_{t_2} B_{t_1}, \dots, B_{t_n} B_{t_{n-1}}$ are independent with mean 0 and variance $t_1, t_2, -t_1, \dots, t_n t_{n-1}$ (this is consistent because $N(0, s) * N(0, t) \stackrel{d}{=} N(0, s + t)$).
- 2. $P(\{\omega \in \Omega : t \to B(t, \omega) \text{ is a continuous function}\}) = 1.$

Proof. (cont.) On $(\Omega, \mathcal{F}, P) = ([0, 1], \mathcal{B}, \text{Leb})$, we will construct a random path $(B(t, \omega), \omega \in [0, 1], t \geq 0)$ such that

- 1. $(B_t, t \ge 0)$ has the finite dimensional distributions of Brownian motion.
- 2. For all $\omega \in \Omega$, $t \mapsto B(t, \omega)$ is a continuous function of t.

So far, we have defined $B_t(\omega)$ for t in the dyadic rationals D, and we need only define it for $t \in [0,1]$.

Now we want to show that the function $t \mapsto B_t$ from $D \to \mathbb{R}$ is uniformly continuous with probability 1. We use a technique that is very important in stochastic processes. Let t_n be the greatest multiply of 2^{-n} that is $\leq t$; explicitly, $t = \lfloor t2^n \rfloor / 2^n$. We will show that there exists a sequence of reals $b_n \downarrow 0$ such that

$$P((\exists t \in D \text{ s.t. } |B_t - B_{t_n}| \ge b_n) \text{ i.o.}) = 0.$$

This means that for almost every $\omega \in \Omega$, there exists an $N(\omega)$ such that for all $n \geq N(\omega)$, $|B_t - B_{t_n}| \leq b_n$.

The definition of uniform continuity is $\forall \varepsilon > 0$, $\exists \delta > 0$ such that $|S - t| < \delta \implies |B_s - B_t| < \varepsilon$ for all s, t. Take $\delta \leq 2^{-n}$ so that if $|s - t| \leq \delta$, then every s, t with $|s - t \leq \delta|$ is such that s and t are within the same or adjacent interval of length 2^{-n} . If they are the in the same interval, then they are $\leq b_n$ apart; if s, t are in adjacent intervals, then they are $\leq 2b_n$ apart by the triangle inequality.

By the first Borel-Cantelli lemma, it is sufficient to find $b_n \downarrow 0$ such that

$$\sum_{n} P(\underbrace{\exists t \in D \text{ s.t. } |B_{t} - B_{t_{n}}| \ge b_{n}}) < \infty.$$

Using a union bound,

$$P(E_n) \le 2^n P(\exists t \in [0, 2^{-n}] \text{ s.t. } |B_t| > b_n)$$

 $\le 2^{n+1} P(\exists t \in [0, 2^{-n}] \text{ s.t. } B_t > b_n)$

Here, we use a preliminary form of the Brownian motion scaling property that $(B_t, t \ge 0) \xrightarrow{d} = ((1/\sqrt{c})B(ct), t \ge 0)$ for all c > 0.

$$=2^{n+1}P(\exists t \in [0,1] \text{ s.t.} B_t > 2^{n/2}b_n)$$

Note that this is the limit of an union of events, and use the continuity of probability measures.

$$=2^{n+1}\lim_{k\to\infty}P(\exists t=j.2^k\in[0,1] \text{ s.t. } B_t>2^{n/2}b_n)$$

Now we use Levy's maximal inequality applied to centered Gaussians.

$$\leq 2P(B_1 > 2^{n/2}b_n)$$

$$= 2^{n+2} \int_{2^{n/2}b_n}^{\infty} \frac{1}{2\pi} e^{-x^2/2} dx$$

We now use a useful bound for the tail of a standard normal distribution, $P(Z > z) \le \varphi(z)/z$, where φ is the density of Z.

$$=\frac{2^{n+2}\varphi(2^{n/2}b_n)}{2^{n/2}b_n}.$$

So we need only find $b_n \downarrow 0$ such that

$$\sum_{n=1}^{\infty} \frac{2^{n+2} \varphi(2^{n/2} b_n)}{2^{n/2} b_n} < \infty.$$

This is left as an exercise, but you can check that $b_n = 1/n$ works.

We now have on a set of probability 1 that $(B_t, t \in D)$ is uniformly continuous. From analysis, we have the fact that if $f: D \to \mathbb{R}$ is uniformly continuous on a set that is dense in [0,1], then f has a unique continuous extension to a function $g: [0,1] \to \mathbb{R}$. This is done by setting $g(t) := \lim_{d \to t} f(d)$; proof is left as an exercise. So we can define $(B_t, t \in [0,1])$ by an extension of $(B_t, t \in D)$. There is a bad set of probability 0, and there we get $B_t = 0$.

We must check that this B has the correct finite dimensional distributions. The a.s. limit of Gaussians $X_n \sim N(\mu_n, \sigma_n^2)$ (if the limit exists) is a Gaussian random variable with mean $\lim_{n\to\infty} \mu_n$ and variance $\lim_{n\to\infty} \sigma_n^2$, so the property holds. Independence of increments is left as an exercise.

1.2 Levy's maximal inequality and the significance of Wiener's theorem

We state the lemma used in the above proof here:

Lemma 1.1 (Levy). Let $S_n = X_1 + \cdots + x_n$ for X_1, X_2, \ldots symmetrically distributed $(X_k \xrightarrow{d} = -X_k)$. Then

$$P\left(\max_{1 \le k \le n} S_k \ge b\right) \le 2P(X_n \ge b).$$

Why do we study Brownian motion? You might think that it is more useful to study more general continuous random processes, rather than a special case. However, along with Poisson processes, which we will learn about later, we will be able to construct more complicated continuous random processes.

Here are a few calculations we can do before class ends. Let s < t. Then

Law of
$$B_t$$
 given $B_s = N(B_s, t - s)$.
Law of B_s given $B_t = N((s/t)B_s, s(t - s))$.